Get Your Money Back: An Update on Lighting Rebates

Get Your Money Back: An Update on Lighting Rebates

By Craig DiLouie , ZINGinc.   July 18,2018     Electrical Contractor

n the commercial sector, cash rebates from utilities and energy-efficiency organizations remain a popular incentive for lighting upgrades. A rebate may be prescriptive, available through application, or midstream, and it may be available for common luminaires and lamps from an electrical distributor at the point of purchase.

In the lighting market, $74 million was spent in 2016 on commercial prescriptive rebates in the United States and Canada. In 2018, 79 percent of the United States is covered by an active lighting rebate program.

Rebates provide two major influences in the lighting market. They drive demand for the most energy-efficient lighting in existing buildings and reduce initial cost. They also influence product development because manufacturers must comply with DesignLights Consortium (DLC) requirements to be listed on the Qualified Products List (which about 80 percent of rebate programs use to qualify eligible products) or other listings, such as Energy Star.

At their core, rebates have essentially remained the same, promoting energy efficiency at and beyond code requirements. Lighting, however, is undergoing a major technology shift to LEDs, digitization and connectivity. This has had a profound impact on rebate programs.

LED rebates level out: According to rebate fulfillment firm BriteSwitch, LED lighting rebates have been dropping an average of 10–20 percent per year, reflecting market price erosion. This trend has continued in 2018 for some product categories, notably tubular LED lamps (average 19 percent decrease) and LED HID replacement lamps (35 percent decrease). Overall, however, the average LED product rebate is declining only about 1 percent this year. Some categories are even increasing, notably LED downlights (5 percent) and linear panels (10 percent).

New lighting categories: In 2018, the DLC is finalizing specifications for several new product types, including 3- and 8-foot lamps, Biax/PL-L lamps, and color-tuning luminaires. Due to a midyear launch, these product types are not expected to gain significant adoption in rebate programs until 2019.

DLC Premium: In April 2017, the DLC launched the DLC Premium classification, which covers luminaires and retrofit kits. This classification was developed to reward the most effective LED products. As an example, a 100-lumens-per-watt (LPW) troffer would have to achieve an efficacy of 125 LPW to gain DLC Premium.

“In terms of rebates, we don’t see a huge impact in the market yet,” said Leendert Jan Enthoven, president, BriteSwitch. “While a handful of programs required DLC Premium products to get a rebate, it’s much more common for programs to provide a $10–20 additional incentive if you use a DLC Premium instead of standard product. In some cases, that extra money is not worth the added cost of the Premium product.”

Lighting controls: Lighting control rebates continue to be widely available in lighting rebate programs, and rebate amounts are remarkably stable. Since BriteSwitch began tracking rebates eight years ago, the company has not seen any appreciable decrease in average dollars per rebate. The average rebate is still about $20–30 for occupancy sensors, making controls an attractive add-on to an upgrade.

Traditionally, control rebates often required a minimum controlled load per control point. Due to smaller controlled wattages in the LED era, many rebate programs are adjusting this requirement to recognize smaller loads.

As energy codes make lighting controls mandatory, some rebate programs are tying them to lighting rebates to maximize energy savings.

“We’re seeing some stand-alone control systems like photocells increasingly become a required element of the lighting rebate and, therefore, not being submitted on their own anymore,” said Mike Cham, chief technology officer at energy incentive data firm Encentiv Energy.

Networked controls: In 2017, utilities began to roll out the first rebates incentivizing installation of networked lighting controls (NLCs), based on the DLC NLC specification and NLC Qualified Products List. According to BriteSwitch, in 2018, this number grew to 21 programs, which are experimenting with different approaches.

“For most types of lighting products and controls, the way of offering rebates has been relatively standardized over the years,” Enthoven said. “For networked lighting controls, it’s still pretty varied. Some programs offer the rebate as a bonus when installing a new fixture that is controlled, others offer a stand-alone rebate for a networked lighting control but may have requirements on how it’s controlled—server, individual fixture control, etc.”

Getting the rebate: Rebate programs may require certain listings such as DLC and Energy Star for products to qualify. Pre-approval is often required, which takes time. Accurately fill out all necessary forms to avoid holdups. In some regions, participation may drain funds early, making it worthwhile to check on rebate availability. Similarly, the rebate check may not arrive for a designated period of time. These details should be explored prior to the project.

“If there’s one thing to know about lighting and control rebates, it’s do your research,” Cham said. “There are many ways to get tripped up during the process.”

 

Trends and Predictions for the LED Market

Trends and Predictions for the LED Market

from Energy Manager Today

The global LED driver market is expected to reach an estimated $16.1 billion by 2023 with a CAGR of 15.5% from 2018 to 2023, according to a new report from Research and Markets. The report states that the major growth drivers for this market are increasing building and construction activities, favorable government regulations for energy efficiency, and increasing adoption of LED lighting in emerging countries.

According to the report, the future of the LED driver market looks attractive with opportunities in the residential, commercial, industrial and automotive lighting sectors.

Emerging trends, which have a direct impact on the dynamics of the LED driver industry, include the development of visible light communication (VLC) LED drivers, and the development of color tunable LED drivers.

Research forecasts that the constant current LED driver will remain the largest product type; it is also expected to witness the highest growth due to ability to provide consistent brightness with lower power consumption and increasing demand in LED backlighting and general lighting applications.

Within the LED driver market, the general lighting segment will remain the largest application. It is also expected to witness the highest growth rate due to increasing demand for energy-efficient products in residential and commercial lighting, increasing usage of LED drivers for building and lighting management systems, and the decreasing price of LEDs.

Asia Pacific is expected to remain the largest region, and it is also expected to witness the highest growth over the forecast period due to increasing penetration of LED lighting in the automotive and building & construction industries. Production and consumption of LED lighting in China is highest, and modernization of infrastructure is expected to propel the demand for lighting products in China.

Comments by Ralph:  For many reasons and in markets of all sorts, the LED market is strong and will continue for several years.  Pricing is favorable and there are many good products for most any task.  There will be winners and losers though and my money is on the quality companies who will be here to back up the long warranties, charge a fair price, and do the vetting they need to assure long lasting, safe, reliable products.  Consider contacting me for assistance with any LED upgrade and projects. You can reach me 267-370-1442 or ralph.girondo@fsgi.com

 

 

 

Lighting Retrofits for Demanding Environments

Lighting Retrofits for Demanding Environments

Article from EC&M  July 2, 2018 & Emerson

Do you have lighting problems in a harsh environment or hazardous location? You may be able to solve each one with a quick and easy retrofit.

How would you like to seriously reduce maintenance costs, production interruptions, and inventory costs without a capital project? You may be wondering how that could be done. The answer is you can accomplish those goals, and more, with a series of easy retrofit upgrades from legacy lighting to LED. And you don’t need to run new branch circuits; in many cases, such an upgrade can be done even while using parts of existing light fixtures.

Before we talk about how, let’s look closer at the why. People often look to LED for the energy savings, but other reasons for switching from a legacy technology to LED may be more important to you.

Relamping relief

Your legacy lamps may last for only 6,000 hours of operation, while LED will take you ten times further. With legacy lighting, you need a relamping program so aging lamps are replaced before their light output drops off to an unacceptable and dangerous level.

The timing of this is well-known for each kind of lamp; many spec sheets include a graph of light output over hours of service. You don’t want to reach the light output drop-off point where the line suddenly curves downward. So you replace functioning lamps before they get to that point.

In a typical relamping scenario, maintenance coordinates downtime with production to allow a relamping contractor access to the lights that are over production equipment or in an area where access means shutdown.

Typically, lifting platforms (often scissor lifts) are required to reach overhead lights. Temporary equipment moves may be required to get scissor lifts close enough horizontally to reach the fixture, unless a boom crane can do the job.

The contractor must get security clearance, and in many facilities an inhouse person must keep tabs on the contractor’s crew. And unless this contractor follows all the rules for disposal and can haul away your old lamps, you’ll probably need a recycling contractor too.

Let’s say you have metal halide lighting. You play this game every other year and you never win. It’s just another chore for you and another cost for your company.

What if you could forget about relamping for the next 60,000 hours of operation? And eliminate future recycling costs? Since LED uses solid state lamp drivers instead of lighting ballasts, the ballast replacement ritual also becomes a thing of the past. How much did ballast replacement cost you last year, in labor hours, replacement parts, and lost production?

You also reduce the production interruptions that relamping brings, especially if yours is a multi-shift facility. You literally reduce red tape by 90%, because those work areas can be roped off every 60,000 hours of operation instead of every 6,000.

With those savings, your total cost of ownership (TCO) drops dramatically. You don’t need the motivation of energy savings to find the retrofit financially compelling. Strong as it is, the financial motivation may take a back seat to something even more  motivating. We’ll discuss that next.

Better lighting

Continuing with our metal halide example, those “fast strike” lamps you paid extra for make a difference when recovering from a power loss. But the light isn’t truly instant on, it’s more like “instant dim” and then you wait for the lamp to reach full brightness. That usually means an annoying wait until work can resume. By contrast, LED really is “instant on”. You don’t need to wait for dim lights to regain their rated output.

True instant on is one of several advantages LED has over legacy lighting. With LED, you also get:

–  Better color rendering.

–  Brighter light without the temperature (Tcode) problems.

–  Better light distribution

–  Reduced glare.

–  Correct beam width to fit your application.

–  Light intensity that is consistent throughout the beam.

The light characteristics differ, depending upon the design of one particular LED luminaire versus another. So if you don’t have the right light with one LED design, try another. A responsive manufacturer can help you try different optic designs or even different fixtures to change the way the light throws or to change any other attribute.

With some experimentation, you’ll probably reduce or eliminate both shadows and task lighting. In many applications, LED technology makes it possible to eliminate shadows without moving or adding lights. You can improve visual acuity and worker safety, thereby enhancing productivity without trying to fit new raceway around process piping or other obstacles.

You may have some free infrastructure benefits, too. Even if you increase the light levels dramatically, the ultra-high efficiency of LED means less load on your branch circuits. And a reduction in load current provides the ability to expand the number of fixtures on an existing circuit.

Project size

The benefits of an LED retrofit are compelling. But how big of a project must this be?

The traditional comprehensive lighting project has many benefits. For example, you can change the lighting layout to improve how well things are lit up. A new arrangement may eliminate the shadows that currently exist, and that’s a key reason for proceeding with a layout change. Yet, there are always unknowns and the new layout may present new shadows.

And, this approach means running new branch circuits. That is often a deal killer for many kinds of applications; hazardous locations and harsh environments are two examples. Any building that has a densely-packed infrastructure of process piping is another.

A big lighting project also requires a capital request and perhaps significant downtime for the work to be done.

The good news is you can get those LED benefits without committing to a big lighting project. And in many cases, you can eliminate shadows without increasing the number of fixtures over what you already have.

The solution involves an easy retrofit against your legacy lighting. For some types of legacy lighting, you can quickly and easily change the fixture with no new wiring involved. For others, you leave the mounting hood in place and just replace the ballast body and lamp with a new driver housing. Direct replacements exist for most legacy ballast/lamp systems, and adapters are available for when there’s not a direct replacement. No new wiring, no new raceway, no moving fixtures around.

Getting started

You can do a few retrofits at a time, using your maintenance budget or perhaps the plant’s project budget instead of a capital request. If you want to go small scale (instead of a full-bore lighting project), where do you start?

Your lighting pain points are probably obvious. So start with those; spend a few minutes making a list of the worst offenders. Then visit some of those trouble spots. Note the location, lighting problem, and type and size of existing light source, and supply panel location.

Next, pick one trouble spot to work on. Do you need more lumens? Better color rendering? A wider beam? More consistent light? All of the above? Contact a lighting products manufacturer to see what the product solution(s) may be for the needs you identified.

You may need to try a few different luminaires to find the solution you were looking for. Because the installation is easy, so is the experimentation to see what works best in that location. If you have lighting problems similar to those at this first trouble spot, you’ll be doing a small “try before buy” experiment on what works for all of them.

When choosing the product you’re going to try, look for globes that are interchangeable, field replaceable, and relatively low weight. Your options should include versatile mounting hoods, retrofit adapters, and color temperature options. You should be able to find a true one-to-one retrofit solution, even with mounting height and application challenges.

Also evaluate the LED luminaires under consideration to ensure they have adequate surge protection. Today’s standard is 6kV for industrial applications.

As you repeat the process for each of the problems on your list, you’ll be gaining experience in how to fix your lighting problems. As those retrofits accumulate and lighting continues to improve, you’ll see brighter days ahead at your facility.

Comments by Ralph Girondo:  Good article covering the many pros and some drawbacks when considering an upgrade. Bottom line is it makes great sense to upgrade and you have options including new fixtures, and or component upgrades to the existing fixtures.  Chances are you can save roughly 60% on energy and get improved lighting with a long list of other benefits.  One point to mention: most legacy lamps will last longer than 6000 hours, although the light output will degrade and they will guzzle up much more of your energy than they need to. Note re paying for the upgrade, You can get financing options to pay for the upgrade out of your savings.  I can help you select the best fixtures and we have many choices for all sorts of applications.  In addition, FSG handles removal, installation, recycling, and several financing options.  Contact me for a no obligation assessment for any of your buildings in all 50 states plus CA. You can reach me at (267)370-1442, on this site, or at ralph.girondo@fsgi.com

PS: Although this article is pointed to harsh environment areas, the same conditions and savings applies to warehouses, plants, and factories of any type,

 

 

 

 

 

 

It’s OK to Stare! The All-New Lithonia VCPG Brings Visual Comfort to a New Level

It’s OK to Stare! The All-New Lithonia VCPG Brings Visual Comfort to a New Level

by Paul Robertson (ALA)   May 31, 2018

Using the latest in LED and light-guide technology, the all-new VCPG LED parking garage luminaire provides optimum illumination and visual comfort while saving up to 85% in energy costs. This modern looking luminaire is the ideal choice for specifiers looking for the lowest power density and superior end-user experience. But don’t let the good looks fool you!  This luminaire is also priced for payback, making it a winning choice for UPR opportunities
where low initial cost coupled with high energy savings win on bid day.

  • Light-guide Technology  – A non-pixilated source for maximum visual comfort.
  • Highly Efficient LED’s – With up to 145 LPW, the VCPG can replace traditional sources and save over 87% in energy costs.
  • Long-Lasting – With an expected service life of greater than 100,000 hours, the VCPG will eliminate up to ten expensive lamp changes.
  • Precision Optics – VCPG optics get the light where it is needed to ensure outstanding uniformity; further enhancing visual acuity.
  • 4,000 to 16,000+ Lumens – A wide range of lumen packages allows one luminaire to be used throughout the entire site.
  • Four Optical Choices – The VCPG has a dedicated optic for every parking garage application, including threshold lighting.
  • Low-Profile Design – The attractive, sleek design of the VCPG is ideal for low-ceiling applications.
  • Affordable – The VCPG may look and act up-scale, but it is priced for pay-back!

Have an application for these? You can contact me for specs, layouts, cost comparisons and special pricing.  We can install everything we sell.

You can reach me at 267-370-1442 or ralph.girondo@fsgi.com

“Human-centric lighting” may be the key to feeling better at work

“Human-centric lighting” may be the key to feeling better at work

By Lynne Peeples    Quartz   6.26.18

Reaching behind a low bookshelf slightly taller than a typical 5-year-old—and one topped with a Seattle Seahawks gnome and stuffed kangaroo—Sara Barbee presses a button labeled “Alert.” Intense bluish light fills her classroom, and nearly all 17 kindergarteners respond with a collective “Whoooaaaaa.” Barbee, their teacher here at Renton Park Elementary School, walks back to the front of the classroom and ushers the students to sit “crisscross applesauce” on the perimeter of a brightly colored alphabet rug. Front-and-center rests a water tank atop a small blue table, which Barbee uses to teach her students about the buoyancy of objects in water.

“Put your thinking caps on,” she beckons. “It’s a good thing we have bright lights on right now.”

Our natural circadian rhythm is a deeply ingrained, physiological drumbeat that, many experts argue, has been disrupted to ill-effect.

Indeed, it’s not the buoyancy lesson that has drawn me to this school just outside of Seattle, but those funky new lights, which are designed to mimic the shifting colors and intensities of the rising and setting sun. Scientists believe that exposure to bright, blue-rich white light during the day, and to softer, amber hues at night, helps restore the human body’s natural circadian rhythm, a deeply ingrained, physiological drumbeat that, many experts argue, has been disrupted to ill-effect by our constant exposure to standard incandescent or fluorescent lighting — and more recently, to the relentless glow of electronic screens.

These are not, of course, new ideas, and doctors have long prescribed light boxes and related paraphernalia for seasonal affective disorder and other forms of depression. But it’s only now, proponents say—amid innovations in light-emitting diode, or LED, technology; amid calls for more energy-efficient lighting infrastructure overall; and amid a renaissance in scientific understanding of how human eyes, brains, and internal clocks interrelate—that a public health revolution, driven by more thoughtful lighting infrastructure, has the potential to unfold.

If that sounds overstated to you, even pseudoscientific, you are not alone. While enthusiasm for circadian lighting, sometimes called human-centric lighting, is on the rise — in classrooms, in office buildings, in sports arenas and nursing homes — experts suggest that, at best, much more science needs to be done, and at worst, a lot of what is peddled under the guise of human-centric lighting is bunkum. James Benya, an engineer and lighting consultant based in Davis, California, went so far as to compare some claims about circadian lighting to snake oil. “We know it is going to have a significant benefit for many people,” Benya said. “But without guiding science, and with the lack of protocols and standards, right now it is the Wild West.”

 Too little light from the blue end of the visible spectrum during the day, or too much of that same light at night, research suggests, can cause an internal clock to slip off beat, setting off a cascade of potential consequences. Still, there is little question that the study of human interaction with light is now in its heyday, and that the implications for our hopelessly indoor lives could be significant. Just this past October, a trio of scientists won a Nobel Prize for discerning the molecular mechanisms controlling our circadian clock—including light’s central role. Their work confirms decades of previous research suggesting that, when optimally synchronized to natural light, our internal timekeepers direct our bodies to feel hungry, sleepy, alert, or energized at appropriate times. Too little light from the blue end of the visible spectrum during the day, or too much of that same light at night, research suggests, can cause an internal clock to slip off beat, setting off a cascade of potential consequences. These include not just poor sleep, reduced concentration, and contrarian moods, but over the long-term, increased risk of depression, diabetes, and cancer.

And this has proponents of advanced lighting arguing for broader adoption of such technologies sooner rather than later. We may not know everything yet, they argue, but we know enough about the benefits of circadian lighting—and the drawbacks of current lighting—to put ideas into practice. “We don’t want to overstate the benefits. But we shouldn’t dismiss them either,” said Mariana Figueiro, director of the Lighting Research Center at Rensselaer Polytechnic Institute. “We have the technology now. It’s a shame that more people aren’t harnessing it.”

n her classroom, Barbee adjusts the lighting via a wall-mounted digital panel a few times during a typical school day. Four different presets range in intensity and in correlated color temperature—an approximation of the wavelength of the light, measured in kelvins, from 2700K to 6500K. Lower color temperatures appear as warmer hues, like the coruscating colors of a campfire, while higher color temperatures look more like a midday blue sky—cooler and brighter. She generally starts each morning with the “Alert” setting, the coolest and brightest, to help wake up the kids (and herself). She might switch to dimmer lights in orange-ish tones later in the afternoon or whenever the class could use some calming down.

Right now, under these bright blue lights, Barbee has her students’ attention, and many of them struggle to stay seated, inching forward for a closer look at the water tank. Aydriane, Khloe, Princess and their classmates spend the next several minutes testing hypotheses for what makes a wood block sink. Maybe wrapping it in a rubber band? How about taping it to another wooden block? Alas, the wood won’t drop. “This is what scientists do,” Barbee assures her class.

“A lot of times they try something and it doesn’t work, but then they try again,” she adds. “That’s how we get smarter.”

Late last December, I met with Bret Coffman, a business process architect at the headquarters of Vulcan Inc., the investment and philanthropic firm headed by Microsoft co-founder Paul Allen. Out the north-facing window of a 10th-floor common room, Coffman and I could see the Space Needle standing tall amid the buildings and cranes of this fast-growing city. To the left, the waters of the Puget Sound glistened under partly cloudy skies. To the right, about a block away, we could see a century-old local business that’s long-helped illuminate this skyline: Seattle Lighting.

Coffman landed in the Emerald City 18 years ago from Colorado, one of the nation’s sunniest states. “When I first moved here, I was really unhappy,” he recalls. Two years into his job as the business process architect at Vulcan, Coffman was still struggling with sleep and focus. He needed frequent doses of caffeine to get through the work day. “Thank God there was a Starbucks downstairs,” he says.

His outlook brightened in 2014, when he was asked by company executives for assistance in investigating the potential benefits of circadian lighting. A tunable LED not unlike the ones used in Barbee’s classroom soon appeared above Coffman’s desk, and in words that would become familiar to me over the course of many months and many discussions, he repeated the circadian lighting refrain: “I immediately started to feel better.”

Just why Coffman and so many others feel this way is something that scientists are only recently beginning to understand—and not everyone agrees on the particulars. For most of the 20th century, it was believed that rods and cones were the eye’s only photoreceptors. That all changed in the early 2000s with the discovery of a third photoreceptor. A few years earlier, researchers had shown that the circadian rhythms of mutant mice lacking rods and cones responded to light, suggesting that what meets the eye results in more than just images formed in the brain. Somewhere, a mysterious photoreceptor was responsible for the circadian system “seeing the light,” said David Berson, a neuroscientist at Brown University who helped identify the new photoreceptors and their preference for blue-spectrum light.

In much the same way as the ear allows us to both hear and stay balanced, the eye’s rods and cones supply us with vision while these novel intrinsic photosensitive retinal ganglion cells, or ipRGCs, perform a separate function: They sense the quality and quantity of light, with input from the rods and cones, and send that information to a master circadian clock in the brain. That clock then conducts a symphony of cellular timepieces throughout the body, ensuring they all “rise and fall with appropriate relationships to the others,” explained Berson.

 The advent of electric light a little more than 150 years ago—a mere blink on the evolutionary timescale—began to move people increasingly away from natural circadian cues. Over millions of years, this complex system evolved with the predictable daily patterns of the sun, its illumination of the sky and, after the eventual innovation of fire, the flicker of a campfire or candle. But the advent of electric light a little more than 150 years ago—a mere blink on the evolutionary timescale—began to move people increasingly away from those natural circadian cues. People in the developed world today spend, on average, 90% of the day indoors and often out of eyeshot of a window. And modern lighting turns out to be a poor proxy for daylight. The typical incandescent or fluorescent bulb, and even a standard non-tunable LED, may succeed in illuminating what we write or where we walk, but they will frequently fail to inform our physiological pacemaker that it’s daytime. And after the sun goes down, conventional lights — along with iPads, laptops, mobile phones, even certain street lights — may prevent the photoreceptor prompts needed for our clocks to properly wind down for bedtime.

It was with these basic concepts in mind that Jonathan Stine, program manager at the Renton School District Energy Management Office, launched the pilot project that would eventually outfit Barbee’s classroom with tunable LEDs. At the time, he wasn’t aware of any school district in the US that had adopted the technology—though that’s not entirely surprising. While the switch to LEDs usually comes with both energy savings and a cut in maintenance costs over the old fluorescent lamps, which needed to be replaced every year or two, adding the ability to tune the lights to mimic natural light usually adds at least 25% to the cost of LEDs. And according to the U.S. Department of Energy, they don’t provide any further energy savings over conventional LEDs. Indeed, the DOE has argued that justification for circadian lighting in schools needs to go beyond energy savings and include “benefits related to a better learning and working environment, possibly linked to student learning outcomes, teacher satisfaction and retention, and human health impacts.”

As it stands, empirical evidence of such outcomes is hard to come by, but anecdotal evidence—from Washington to Texas to Sweden—is reaching a crescendo. The winter sky in the southern Swedish city of Malmo, for example, tends to look much like that in Seattle: dull and gray. But a visitor might not know that if they were standing inside Anna Milstam’s classroom at the Lindeborg school. Milstam recalled her return after summer break in 2015, right after the new lights had been installed. “I thought we had skylights,” she said. “I want to be in that classroom as much as I can.” Her ninth grade students echoed the sentiment. “When the sun comes up, we naturally get more happy,” said Augusta Andersson during a Skype interview in December — when the sun doesn’t rise in Malmo until nearly 9 a.m. “Now, with the lights, those positive feelings come a bit earlier.”

Louis Diep, another student, added that the lights seem to improve his focus on exams and the quality of his sleep.

Of course, these are just personal accounts, but it’s no secret to parents that teenagers can struggle to wake up in the morning for school, and they have a legitimate biological excuse: The circadian rhythm of a child naturally shifts when they reach puberty, pushing their cycle of sleep and wakefulness about two hours later than those of an average adult. Exacerbating that effect, teens may also be more sensitive than adults to disruptive blue light at night, while a lack of blue-spectrum light during the school day can further mess with middle school students’ sleep—specifically, extending the time it takes them to fall asleep by an average of 30 minutes, according to a study co-authored by Figueiro. Research has suggested that inadequate exposure to bright blue-rich light early in the day can make both adults and children extra susceptible to the effects of blue light at night. “If you want to sit in front of your iPad in the evening,” said Figueiro, “you better get a lot of light during the day.”

 

Andersson, Diep, and their classmates have been in Milstam’s room for going on three years now, and as seventh graders, they participated in a master’s thesis project, the conclusions of which seem to support Figueiro’s findings. They slept slightly better than students in a classroom lit by the school’s preexisting fluorescent lights, even after accounting for differences in age, exercise, screen exposure, and classroom windows, among other variables.

Hints of positive impacts have emerged in Texas, too, where tunable LED systems have been installed in some elementary and middle school classrooms in Carrollton, a northern suburb of Dallas. A September DOE report on the Carrollton systems suggested that the tunable LED system had improved the overall learning environment—though the DOE noted that empirically measuring the effects of the circadian lights of was beyond the scope of the project. Back in Washington, entire schools — including two Renton high schools and a brand new middle school—now have circadian lighting, and initial data out of Lindbergh High School seemed to echo the findings in Texas: The school reported a double-digit rise in SAT test scores following installation of the tunable LEDs.

The emerging evidence for circadian lighting’s benefits has been enough to prompt the Washington Sustainable Schools Protocol (pdf)—design guidelines for learning environments developed in collaboration with the state’s Office of Superintendent for Public Instruction—to encourage the use of tunable LED systems in the construction of new school buildings. Meanwhile, the Seattle Mariners professional baseball team became the first in the major leagues to install circadian lighting in the players’ locker room in 2013. They preset the LEDs to provide stimulating pre-game light and calming post-game light. The latter aimed to help the players rest and recover for the next nine innings—usually scheduled for the next day.

 “No matter what sport you’re in, or whether you’re in a learning environment or in a health care environment, we all know that blue sky and sunshine mean everyone is more energetic and their mood is better.” “When you’re in sports, you’re looking for every advantage you can get to improve performance,” said the team’s former facilities manager, Scott Jenkins, who is now with the Atlanta Falcons of the National Football League. He recently installed tunable LED lighting in the Falcons facilities, too. Other professional teams including the Portland Trailblazers, Denver Nuggets, and New York Yankees have also followed suit. “No matter what sport you’re in, or whether you’re in a learning environment or in a health care environment, we all know that blue sky and sunshine mean everyone is more energetic and their mood is better,” Jenkins said. “When you live in Seattle and you suffer through months at a time without any real sunshine — well, there’s a reason Starbucks does so well.”

“There are only 32 NFL teams. There are only 30 MLB teams,” added Jenkins. “But think about how many schools there are, and how many health care facilities there are. To be able to use light to benefit people’s learning and health—there’s a huge opportunity there.”

Still, for all of its suggested promise, the impacts of tunable LED lighting on learning—or on anything else related to public health, for that matter—remain mostly speculative. Even Stine is hesitant to give full credit to the new lighting alone for Lindbergh High’s improved test performances. “There are so many factors in student achievement,” he said, adding that the classroom lighting systems would benefit from a rigorous scientific study.

Other possible benefits of circadian lighting in schools, such as improved behavior and attention, are even more difficult to gauge. “I don’t know what they would have achieved otherwise. But I have a class where all the pupils are motivated,” says Milstam in Sweden. “And it’s a different situation for many other classes in the school.” Barbee, too, recognized other factors that might influence her students’ responses, including her use of music and how she announces to her class when she switches light settings.

Experts share these teachers’ caution in making too much of the lighting just yet. “It’s thrilling for a basic biologist to see stuff translating into practical applications,” said Brown University’s Berson. “But we need to be careful not to get too far ahead of ourselves and assume we really know what a particular color of light is doing to an actual child in an actual school environment without appropriate controlled studies.”

Deborah Burnett, a lighting consultant partner with Benya, also worries that certain lights might even have the potential to harm some students. Children don’t have the same natural defenses in their eyes as adults, she noted, expressing particular concern for when light levels rapidly and drastically change multiple times throughout the day, which is how Barbee and many other teachers currently use the lighting. In fact, Milstam’s students in Sweden initially found the quick changes in brightness and colors too jarring and distracting, which prompted school officials to program the lights to very gradually adjust over the course of the school day.

For all the uncertainty, research does suggest that blue-spectrum light may boost alertness and cognitive function, and Coffman’s environs at Vulcan Inc. bears witness to this notion in exquisite detail. Near his desk is a small conference room with bright green-painted walls. Instead of another trip to Starbucks whenever he needs a strong pick-me-up, Coffman will now often opt for what he refers to as a “blue blast”: 15 minutes of intense blue light in this room. If he’s still feeling wired at the end of the day, Coffman adds, a short orange-hued blast will put him in the mood for a beer.

Vulcan’s lighting retrofit was the first large-scale installation of tunable LEDs in a US office building, according to Planled, a lighting solutions company based outside Seattle, which consulted on the project. (They also partnered with the Renton School District.) On all six floors of the Vulcan offices, employees now spend their days under the new lights. In addition to personal computer-based controls, an employee can push a button that syncs their overhead LEDs to the day clock, much like in Milstam’s classroom.

“Your people are where most of the cost is,” says Cody Crawford, the head of facilities and operations at Vulcan. His office is down the hall, past a photo of the burning sun, from Coffman’s desk. He emphasizes the importance of educating Vulcan employees about the lights. “People in general don’t like change. They may not realize that the lack of light is making them tired and groggy,” he adds. “You almost have to force them to try it for more than an hour.”

Much like Barbee says of her kindergarteners’ responses to tunable LEDs at Renton Park, which is just a short drive south on I-5, Crawford can’t be sure how the new lighting is impacting Vulcan’s employees—or its bottom-line. It’s hard to measure productivity “unless you’re a manufacturing facility,” he says. Crawford’s team had considered assessing absenteeism, but complicating factors such as high staff turnover and variations in annual flu bugs dissuaded them.

“People are happy about it,” says Crawford says of the new lighting. “How much more effort do you want to put into [measuring] it? Time is money.”

Steven Lockley, a circadian lighting expert at Harvard Medical School, is among experts who have attempted to measure effects. His team found that people exposed to blue-rich light reacted faster and had fewer lapses in attention than people exposed to warmer hues. In a paper referencing his work, other researchers found blue light significantly superior to caffeine in boosting cognitive function and alertness in 21 people. Plus, light lacks the same knock-on consequences as a cup of coffee. “Caffeine at 10am will still affect your sleep at night,” says Lockley, noting the chemical’s five-to-six-hour half-life.

 A study of employees receiving high levels of circadian-stimulating light during work hours found they had more stable circadian rhythms, as well as lower levels of depression and greater sleep quality. report (pdf) commissioned by LightingEurope, an industry trade group, calculated office productivity increases equivalent to about two more hours per month, a decrease in sick days of one percent and an increase in employment duration of one year as a result of tunable LED lighting. (They found greater benefits in the industrial setting.) And in a study by Figueiro’s team of daytime light exposure on office workers(pdf), employees receiving high levels of circadian-stimulating light during work hours had more stable circadian rhythms, as well as lower levels of depression and greater sleep quality, compared to employees receiving lower levels.

The employees in Figueiro’s study all wore a device calibrated to measure light exposures deemed capable of affecting the circadian system. Overall, her team found that nearly half of the workers studied did not receive enough light in the morning to adequately stimulate their internal clocks, despite nearly all of them receiving the Illumination Engineering Society’s recommended level of illuminance, 300 lux, at their desks. (For comparison, natural light is about 100,000 lux on a sunny day and 10,000 lux on a cloudy day.) Such recommendations, as well as most energy codes, are generally calculated with only visibility, safety, and energy-efficiency goals in mind. “Energy codes are getting more and more strict,” said Figueiro. “The tendency is to reduce the amount of light.” At Vulcan, for example, daylight sensors automatically reduce artificial lighting in response to available daylight, per a requirement from the City of Seattle.

Russell Foster, an expert in circadian neuroscience at the University of Oxford, pointed out that while adding bright light in the workplace will increase levels of alertness, it remains unclear how that exposure might stabilize the circadian clock compared to light exposures, say, during your commute to work or while you’re in the bathroom brushing your teeth. “It may well be that it’s too late by the time you get to work,” said Foster, whose research uncovered some of the first evidence for the third photoreceptor.

“After the ‘Wow, this is extraordinary,’ it has taken us a while to get to the applications,” he added. “We’re now at an incredibly exciting stage. The next leap forward is making this work in the real world.”

Neuroscientists, biologists, sleep doctors, and architects around the world are attempting to address the questions necessary to make that leap: Just what intensity and color of light — and when and where and for how long — best keeps our circadian clocks ticking on time? How much does this recipe vary by age, sex, and other differences between us? In search of answers, some scientists are using devices designed to measure a person’s exposure to light. Others are leveraging functional MRI technology to understand the brain’s response to light. Still other researchers are attempting to decipher more details of the complex circadian circuitry via animal models.

Much of the work continues to focus on light’s dark side. Too much light at night, underscores a December report that summarized findings of an expert panel convened by the National Toxicology Program, disrupts sleep and other biological processes controlled by our clocks. But a consensus has emerged that the problem is not just over-lighting our eyes at night, but also prevalent under-lighting during the day. Lockley, Figueiro, and Berson were among more than a dozen scientists who penned an opinion paper in 2014 arguing for the consideration of both factors in lighting design. A study in mice published in October 2017 further hinted that some of the consequences of failing to do so may be passed down through future generations.

Marty Brennan, a Seattle-based architect, is among the newer names now seeking solutions. He has developed software to help designers simulate daylight. He implemented the tool himself in recent projects at the Swedish Medical Behavioral Unit in Seattle and Children’s Hospital of Philadelphia. Meanwhile, research from Kenneth Wright of the University of Colorado, Boulder, focuses on the more intuitive aspects of the idea. In a small study of preschool children published in March, he found that an hour of bright light before bedtime nearly stopped production of the sleep-promoting hormone melatonin. Suppression continued for almost an hour after the lights went out. Wright also co-authored a 2017 study that suggested exposure to natural light during a couple nights of camping — without any electronics — can rapidly reset the body’s circadian clock.

The takeaway: While scientists still can’t beat the real thing, they might be getting better at simulating Earth’s day-and-night cycles. “Electric light does the trick,” said Brennan.

Mickey and Minnie Mouse smile and sway on a windowsill — the bobble head dolls’ dance powered by rays of California sunshine. A dozen feet away, a woman sits in her wheelchair engrossed by a soap opera. She’s back in her room after winning a round of bingo, and will soon roll down the hall to lunch at the Bistro Cafe. The stretch of hallway outside her door is known in this Sacramento nursing home as Bamboo Lane. Since the ACC Care Center replaced Bamboo Lane’s fluorescent lights — which stayed on full blast day and night — with the tunable LEDs, she and other residents report that they’ve been sleeping better and experiencing improved moods. Melanie Segar, an administrator at the center, describes one resident, as having gone from being angry much of the time to being in a “happy place.”

“That’s the best we can hope for with dementia,” Segar says.

By the age of 75, science suggests that the average adult receives just 17 percent of the light needed to fully stimulate the circadian system. A yellowing lens, a narrowing pupil, cataracts, and increased time spent indoors can all conspire. To make matters worse, blue is the part of the light spectrum filtered by the eye’s aging lens. This lack of light reaching the retina can disrupt the natural fluctuations of hormones such as cortisol and melatonin, explains Dr. Scott Stringer during a visit to his office at the nursing home.

When Stringer started at the center four years ago, he began giving some residents with behavior and depression issues an unusual prescription: a couple of hours of morning sunshine. That’s generally a fillable order in a city boasting 265 annual days with sun. “Sunshine is still the gold standard,” says Stringer. However, for a 99-bed facility, it’s not practical to get everyone a daily dose of courtyard sun. The introduction of circadian lighting at the center means Stringer’s light prescriptions are no longer limited to those he’s able to roll outside.

 Research suggests that manipulating artificial light could prove a useful non-pharmacological tool to regulate the circadian rhythms of older adults, especially those suffering from dementia. Research suggests that manipulating artificial light could prove a useful non-pharmacological tool to regulate the circadian rhythms of older adults, especially those suffering from dementia. The disease can damage neurons in the region of the brain that controls the circadian clock. So, if the tunable LEDs really can compensate for some of that loss, Stringer anticipates a significant impact on residents’ well-being and on health care costs. “Hospital readmissions cost a lot of money,” says Stringer, adding that the nursing home should be a “one-time destination.”

The ACC Care Center was the focus of another DOE study, conducted after the center had installed its first tunable LEDs in a couple residents’ rooms and the adjacent corridor of Cherry Lane. In addition to energy savings of 68 percent relative to the old fluorescent system, they found that the three residents living in the two rooms had 41 percent fewer incidents of yelling, agitation, and crying during the three months following the installation compared to the preceding three months. Nursing staff also noticed that these residents began consistently sleeping through the night.

“I didn’t think much about lighting before. But I’ve become a true believer after seeing how it’s affected residents,” says Segar, as we finish touring the center. Once Cherry Lane got the tunable LEDs, she recalls, residents from other corridors began hanging out there. “And their family members began asking when they would be getting the lights too,” said Segar.

The center has now replaced the lights in all halls, common areas, resident rooms, and bathrooms as part of a broader remodel of their 30-year-old facility. Stringer is eager to study the impacts in more detail than what can be inferred from a small uncontrolled study. “We need a prospective study to see if it’s really the lighting,” he says.

That’s the other refrain I heard repeatedly over the course of the last year. While there are strong hints from research advances in cellular biology and neuroscience, some peer-reviewed studies in animals and people and a number of compelling anecdotes, much better data is needed to optimally apply circadian lighting in the real world. “We need measures of light exposure over long periods of time in a range of different settings in a larger number of subjects,” said Foster, adding that improved technologies for measuring sleep, circadian rhythms, and light exposures should make such studies doable. “Until we have that data, designing those lighting systems appropriately is going to be guesswork. We may guess correctly and it may be better than what we got. But, ideally, we should have evidence-based solutions.”

Such solutions will need to consider a host of complicating factors. Whether or not exposure to light will help or hinder someone’s rhythms comes down, primarily, to getting the right color at the right intensity at the right time and for the right length of time. But the response of each individual’s circadian system is unique, varies by age and is further influenced by other factors such as region and season. Human evolution began near the equator, where we never dealt with any significant shortening and lengthening of daylight hours. Our third photoreceptor also evolved with light coming down from the sky, meaning the angle at which light hits the eye is likely important too. What’s more, researchers are finding that exposure to blue-spectrum light may be less critical for stimulating the circadian system when the overall light exposure is high.

No standard yet exists for measuring light that affects people via the third photoreceptor. Traditional light metrics such as lux, lumens, and color temperature are based on rods and cones alone. At this point, experts can only agree with the need for a standard single metric for the circadian effectiveness of light. In their studies, the DOE used something termed the “equivalent melanopic lux.” Figueiro and her colleagues use a metric they call the “circadian stimulus.” Meanwhile, a committee of the International Commission on Illumination (CIE) is attempting to translate the scientific consensus into a first international standard. John O’Hagan, director of the CIE’s Division on Photobiology and Photochemistry, noted that voting is underway and a final version could be published by the end of 2018.

The new standard will include information concerning the effects of age, an area of personal interest to O’Hagan. His father-in-law suffered from Alzheimer’s until his death. “I was horrified at the environment he had to live in,” recalled O’Hagan, referring to ever-present fluorescent light his father was exposed to. “I firmly believe that something can be done.”

Harvard’s Lockley added his sense of urgency to leveraging circadian lighting. Building managers have started swapping out old lights for energy-efficient LEDs, usually of the cheaper, non-tunable variety, he said. Designers of new construction are generally opting for the same. Because of the long lifespan of LEDs — much of their appeal — it could be a decade or more before those lights fade to yield another justifiable opportunity to invest in tunable LEDs. He did highlight one notable early adopter: In 2016, NASA installed tunable LEDs on the International Space Station.

“If it’s good enough for astronauts on the space station,” Lockley said, “then it’s good enough for all of us.”

Comments by Ralph:   Need help or interested in improving your lighting in your facility or hospital. reach out as I have many fixtures / products to get the proper color balance and mix for what you want to achieve.  I can be reached at 267-370-1442 or ralph.girondo@fsgi.com