HOW DOES LIGHTING AFFECT MENTAL HEALTH IN THE WORKPLACE?

HOW DOES LIGHTING AFFECT MENTAL HEALTH IN THE WORKPLACE?

Source: Forbes Magazine Article 12/31/18 By: Dr. Pragya Agarwal

Poor lighting often gets overlooked in the workplace, as we talk about mental health and well-being, and the focus is firmly on creating happier and healthier workplaces. But bad lighting is associated with a range of ill-health effects, both physical and mental, such as eye strain, headaches, fatigue and also stress and anxiety in more high-pressured work environments. As we spend much of the day in artificial lighting, there is evidence that the lack of natural sunlight has an adverse effect on the body and the mind, and can result in conditions such as seasonal affective disorder (SAD).

As we navigate the darkest (and shortest days) of the year, 40% of office workers are struggling to work in poor lighting every day. This has a negative effect on their productivity and wellbeing – according to a new research report, looking at the impact of lighting in the workplace. This is a recent research report by the UK company Staples, where an online survey of 7,000 office workers was conducted in October 2018. The research sample consisted of a sample of desk-based office workers from ten European including: United Kingdom (2,000, with 302 in London), Germany (1,000), France (500), Netherlands (500), Sweden (500), Norway (500), Spain (500), Italy (500), Portugal (500) and Finland (500).

80% of office workers, said that having good lighting in their workspace is important to them, and two-in-five (40%) are having to deal with uncomfortable lighting every day. A third (32%) said better lighting would make them happier at work. However, when access to natural sunlight is so limited in the winter, many are feeling stressed and suffering from seasonal affective disorder (SAD), and often spend long hours at their desks which is sometimes their only access to light during the day. The results have also shown that 25% of the surveyed are frustrated at having to deal with poor lighting in their workplaces.

Often just 13-15 mins of exposure to natural light are enough to trigger the release of endorphins or “happy hormones”. Dr. Joe Taravella, a supervisor of pediatric psychology at NYU Lagone Medical center said that SAD “affects anywhere from 5% to 10% of the population:, which is a huge proportion of the population suffering from clinical levels of depression for up to a quarter of the year. Another research concludes that there is a strong relationship between workplace daylight exposure and office workers’ sleep, activity, and quality of life.

There are no statutory workplace lighting levels in the UK. Regulation 8 of the Workplace Health, Safety and Welfare (WHSW) simply requires that lighting at work is “suitable and sufficient” and that, where possible workplaces are lit by natural light. The emphasis on natural lighting and other related research reflects the consensus that daylight is the best form of light. But, in parts of the northern hemisphere, daylight by itself will not provide sufficient illuminance throughout a working area. This means that “sufficient and suitable” lighting usually needs a combination of natural and artificial lighting, and especially artificial lighting that can be personalized as per the activity, function and individual requirements, and those that can imitate natural daylight.

The research by Staples recommends providing SAD lamps to employees, and to have cold-tone lighting with high illuminance in the mornings for maximum productivity. In this research report, 68% of the surveyed workforce admitted that they would feel more valued by their employers if they considered their health and well-being and invested in suitable lighting.

Personalized lighting options can help create more inclusive work environments. One such way is the use of biodynamic lighting which can then adjust the lighting during the day for the tone and illuminance as per natural daylight levels outside, and also the individual requirements of the user. This way the employees feel more in control of their work environments, which has been shown to increase their levels of happiness and productivity in the workplace.

Some lighting designers have recommended an emphasis on cooler, daylight temperatures, for example by adding more blue to the mix. A trial by the University of Surrey’s sleep research center suggests that certain wavelengths of blue light suppress the sleep hormone that regulates sleep/wake cycles. The trial compared alertness levels among staff working in the blue-enriched light with those on a control floor. It found that first thing in the morning and at lunchtime, alertness levels were the same on both floors. But another measure just before staff left for home found significantly higher alertness on the trial floor. Staff also reported improved sleep patterns, and although not scientifically validated, indicated that visual acuity was better with the blue light, and after four weeks, 92% of people on the floor said they preferred it over the old lighting.

There is sufficient evidence now to show that well-being in the workplace can be hugely improved by providing lighting that mimics natural daylight, by bringing more natural light in with large windows, by providing suitable levels of illumination for visual acuity, and by providing personalized lighting that can be adjusted as per the individual biodynamics as well as the task on hand.

Comments by Ralph: Ample evidence exists lighting has a major influence on workplace productivity and even happiness. Check in with me to get some simple and easy tips to improve your space whether with new lamping or fixtures. In a perfect world, I can look at the energy load of current fixtures, and also increase the efficiency of your system. Reach out here on site if you need help.

WHAT WORKING IN A DARK OFFICE MAY DO TO YOUR BRAIN

WHAT WORKING IN A DARK OFFICE MAY DO TO YOUR BRAIN

Source: Fast Company Feb. 7, 2018;  By Katherine Schwab

“Dim lights are producing dimwits,” remarks one researcher studying the connection between light and mental acuity.

Working in an office with a lot of natural light doesn’t just make you more productive on the job and help you sleep better at night–it may also be vital to your intelligence. A new study from Michigan State University has found that spending too much time in dim areas, like poorly lit offices, could actually change the structure of rats’ brains, impacting the way they remember information and learn new things. It suggests that the quality of light in our physical environments may deeply affect us.

MSU neuroscientists studied the brains of Nile grass rats, which are comparable to humans in that they are awake during the day and asleep at night, and discovered that after exposing them to dim light over a period of four weeks, the rats lost 30% of the capacity of their hippocampuses (the region of the brain responsible for learning and memory). The dim light also impacted the rats’ performance on a spatial task.

On the flip side, rats that were exposed to bright light improved on their performance of the spatial task; and when rats that had been exposed to dim light were given doses of bright light for a month, they fully recovered the mental capacity that had been lost.

For the scientists behind the study, “dim light” means your average gray Midwestern winters’ day or normal indoor lighting. No wonder we tend to feel more mentally sluggish during the winter months.

The reduction in mental acuity due to dim light has been studied before, but how it occurs was the primary focus of the new study. The researchers discovered that when there’s dimmer light, there is less of a particular peptide in the brain that maintains the connections between neurons in the hippocampus. “Since there are fewer connections being made, this results in diminished learning and memory performance that is dependent upon the hippocampus,” says Antonio Nunez, a psychology professor and co-investigator on the study in a statement. “In other words, dim lights are producing dimwits.”

While the research was carried out on rats, it suggests that the design of the spaces we inhabit has a direct impact on the way that we think. Spending so much time in dimly lit offices could have real consequences on the brain over time, given that humans spend 90% of their time indoors. That means that designing offices so they have a large amount of natural light isn’t just a nice perk for workers. It’s a necessity for people to be their most productive and healthiest selves.

Comments by Ralph:  Proper Lighting is very important for mood as well as productivity. This is becoming even more of an issue as LED catches on and light level tuning is easier. If you need help for any of your office lighting, FSG and I can help with the best solutions. You can reach out to me here or at ralph.girondo@fsgi.com

 

“Human-centric lighting” may be the key to feeling better at work

“Human-centric lighting” may be the key to feeling better at work

By Lynne Peeples    Quartz   6.26.18

Reaching behind a low bookshelf slightly taller than a typical 5-year-old—and one topped with a Seattle Seahawks gnome and stuffed kangaroo—Sara Barbee presses a button labeled “Alert.” Intense bluish light fills her classroom, and nearly all 17 kindergarteners respond with a collective “Whoooaaaaa.” Barbee, their teacher here at Renton Park Elementary School, walks back to the front of the classroom and ushers the students to sit “crisscross applesauce” on the perimeter of a brightly colored alphabet rug. Front-and-center rests a water tank atop a small blue table, which Barbee uses to teach her students about the buoyancy of objects in water.

“Put your thinking caps on,” she beckons. “It’s a good thing we have bright lights on right now.”

Our natural circadian rhythm is a deeply ingrained, physiological drumbeat that, many experts argue, has been disrupted to ill-effect.

Indeed, it’s not the buoyancy lesson that has drawn me to this school just outside of Seattle, but those funky new lights, which are designed to mimic the shifting colors and intensities of the rising and setting sun. Scientists believe that exposure to bright, blue-rich white light during the day, and to softer, amber hues at night, helps restore the human body’s natural circadian rhythm, a deeply ingrained, physiological drumbeat that, many experts argue, has been disrupted to ill-effect by our constant exposure to standard incandescent or fluorescent lighting — and more recently, to the relentless glow of electronic screens.

These are not, of course, new ideas, and doctors have long prescribed light boxes and related paraphernalia for seasonal affective disorder and other forms of depression. But it’s only now, proponents say—amid innovations in light-emitting diode, or LED, technology; amid calls for more energy-efficient lighting infrastructure overall; and amid a renaissance in scientific understanding of how human eyes, brains, and internal clocks interrelate—that a public health revolution, driven by more thoughtful lighting infrastructure, has the potential to unfold.

If that sounds overstated to you, even pseudoscientific, you are not alone. While enthusiasm for circadian lighting, sometimes called human-centric lighting, is on the rise — in classrooms, in office buildings, in sports arenas and nursing homes — experts suggest that, at best, much more science needs to be done, and at worst, a lot of what is peddled under the guise of human-centric lighting is bunkum. James Benya, an engineer and lighting consultant based in Davis, California, went so far as to compare some claims about circadian lighting to snake oil. “We know it is going to have a significant benefit for many people,” Benya said. “But without guiding science, and with the lack of protocols and standards, right now it is the Wild West.”

 Too little light from the blue end of the visible spectrum during the day, or too much of that same light at night, research suggests, can cause an internal clock to slip off beat, setting off a cascade of potential consequences. Still, there is little question that the study of human interaction with light is now in its heyday, and that the implications for our hopelessly indoor lives could be significant. Just this past October, a trio of scientists won a Nobel Prize for discerning the molecular mechanisms controlling our circadian clock—including light’s central role. Their work confirms decades of previous research suggesting that, when optimally synchronized to natural light, our internal timekeepers direct our bodies to feel hungry, sleepy, alert, or energized at appropriate times. Too little light from the blue end of the visible spectrum during the day, or too much of that same light at night, research suggests, can cause an internal clock to slip off beat, setting off a cascade of potential consequences. These include not just poor sleep, reduced concentration, and contrarian moods, but over the long-term, increased risk of depression, diabetes, and cancer.

And this has proponents of advanced lighting arguing for broader adoption of such technologies sooner rather than later. We may not know everything yet, they argue, but we know enough about the benefits of circadian lighting—and the drawbacks of current lighting—to put ideas into practice. “We don’t want to overstate the benefits. But we shouldn’t dismiss them either,” said Mariana Figueiro, director of the Lighting Research Center at Rensselaer Polytechnic Institute. “We have the technology now. It’s a shame that more people aren’t harnessing it.”

n her classroom, Barbee adjusts the lighting via a wall-mounted digital panel a few times during a typical school day. Four different presets range in intensity and in correlated color temperature—an approximation of the wavelength of the light, measured in kelvins, from 2700K to 6500K. Lower color temperatures appear as warmer hues, like the coruscating colors of a campfire, while higher color temperatures look more like a midday blue sky—cooler and brighter. She generally starts each morning with the “Alert” setting, the coolest and brightest, to help wake up the kids (and herself). She might switch to dimmer lights in orange-ish tones later in the afternoon or whenever the class could use some calming down.

Right now, under these bright blue lights, Barbee has her students’ attention, and many of them struggle to stay seated, inching forward for a closer look at the water tank. Aydriane, Khloe, Princess and their classmates spend the next several minutes testing hypotheses for what makes a wood block sink. Maybe wrapping it in a rubber band? How about taping it to another wooden block? Alas, the wood won’t drop. “This is what scientists do,” Barbee assures her class.

“A lot of times they try something and it doesn’t work, but then they try again,” she adds. “That’s how we get smarter.”

Late last December, I met with Bret Coffman, a business process architect at the headquarters of Vulcan Inc., the investment and philanthropic firm headed by Microsoft co-founder Paul Allen. Out the north-facing window of a 10th-floor common room, Coffman and I could see the Space Needle standing tall amid the buildings and cranes of this fast-growing city. To the left, the waters of the Puget Sound glistened under partly cloudy skies. To the right, about a block away, we could see a century-old local business that’s long-helped illuminate this skyline: Seattle Lighting.

Coffman landed in the Emerald City 18 years ago from Colorado, one of the nation’s sunniest states. “When I first moved here, I was really unhappy,” he recalls. Two years into his job as the business process architect at Vulcan, Coffman was still struggling with sleep and focus. He needed frequent doses of caffeine to get through the work day. “Thank God there was a Starbucks downstairs,” he says.

His outlook brightened in 2014, when he was asked by company executives for assistance in investigating the potential benefits of circadian lighting. A tunable LED not unlike the ones used in Barbee’s classroom soon appeared above Coffman’s desk, and in words that would become familiar to me over the course of many months and many discussions, he repeated the circadian lighting refrain: “I immediately started to feel better.”

Just why Coffman and so many others feel this way is something that scientists are only recently beginning to understand—and not everyone agrees on the particulars. For most of the 20th century, it was believed that rods and cones were the eye’s only photoreceptors. That all changed in the early 2000s with the discovery of a third photoreceptor. A few years earlier, researchers had shown that the circadian rhythms of mutant mice lacking rods and cones responded to light, suggesting that what meets the eye results in more than just images formed in the brain. Somewhere, a mysterious photoreceptor was responsible for the circadian system “seeing the light,” said David Berson, a neuroscientist at Brown University who helped identify the new photoreceptors and their preference for blue-spectrum light.

In much the same way as the ear allows us to both hear and stay balanced, the eye’s rods and cones supply us with vision while these novel intrinsic photosensitive retinal ganglion cells, or ipRGCs, perform a separate function: They sense the quality and quantity of light, with input from the rods and cones, and send that information to a master circadian clock in the brain. That clock then conducts a symphony of cellular timepieces throughout the body, ensuring they all “rise and fall with appropriate relationships to the others,” explained Berson.

 The advent of electric light a little more than 150 years ago—a mere blink on the evolutionary timescale—began to move people increasingly away from natural circadian cues. Over millions of years, this complex system evolved with the predictable daily patterns of the sun, its illumination of the sky and, after the eventual innovation of fire, the flicker of a campfire or candle. But the advent of electric light a little more than 150 years ago—a mere blink on the evolutionary timescale—began to move people increasingly away from those natural circadian cues. People in the developed world today spend, on average, 90% of the day indoors and often out of eyeshot of a window. And modern lighting turns out to be a poor proxy for daylight. The typical incandescent or fluorescent bulb, and even a standard non-tunable LED, may succeed in illuminating what we write or where we walk, but they will frequently fail to inform our physiological pacemaker that it’s daytime. And after the sun goes down, conventional lights — along with iPads, laptops, mobile phones, even certain street lights — may prevent the photoreceptor prompts needed for our clocks to properly wind down for bedtime.

It was with these basic concepts in mind that Jonathan Stine, program manager at the Renton School District Energy Management Office, launched the pilot project that would eventually outfit Barbee’s classroom with tunable LEDs. At the time, he wasn’t aware of any school district in the US that had adopted the technology—though that’s not entirely surprising. While the switch to LEDs usually comes with both energy savings and a cut in maintenance costs over the old fluorescent lamps, which needed to be replaced every year or two, adding the ability to tune the lights to mimic natural light usually adds at least 25% to the cost of LEDs. And according to the U.S. Department of Energy, they don’t provide any further energy savings over conventional LEDs. Indeed, the DOE has argued that justification for circadian lighting in schools needs to go beyond energy savings and include “benefits related to a better learning and working environment, possibly linked to student learning outcomes, teacher satisfaction and retention, and human health impacts.”

As it stands, empirical evidence of such outcomes is hard to come by, but anecdotal evidence—from Washington to Texas to Sweden—is reaching a crescendo. The winter sky in the southern Swedish city of Malmo, for example, tends to look much like that in Seattle: dull and gray. But a visitor might not know that if they were standing inside Anna Milstam’s classroom at the Lindeborg school. Milstam recalled her return after summer break in 2015, right after the new lights had been installed. “I thought we had skylights,” she said. “I want to be in that classroom as much as I can.” Her ninth grade students echoed the sentiment. “When the sun comes up, we naturally get more happy,” said Augusta Andersson during a Skype interview in December — when the sun doesn’t rise in Malmo until nearly 9 a.m. “Now, with the lights, those positive feelings come a bit earlier.”

Louis Diep, another student, added that the lights seem to improve his focus on exams and the quality of his sleep.

Of course, these are just personal accounts, but it’s no secret to parents that teenagers can struggle to wake up in the morning for school, and they have a legitimate biological excuse: The circadian rhythm of a child naturally shifts when they reach puberty, pushing their cycle of sleep and wakefulness about two hours later than those of an average adult. Exacerbating that effect, teens may also be more sensitive than adults to disruptive blue light at night, while a lack of blue-spectrum light during the school day can further mess with middle school students’ sleep—specifically, extending the time it takes them to fall asleep by an average of 30 minutes, according to a study co-authored by Figueiro. Research has suggested that inadequate exposure to bright blue-rich light early in the day can make both adults and children extra susceptible to the effects of blue light at night. “If you want to sit in front of your iPad in the evening,” said Figueiro, “you better get a lot of light during the day.”

 

Andersson, Diep, and their classmates have been in Milstam’s room for going on three years now, and as seventh graders, they participated in a master’s thesis project, the conclusions of which seem to support Figueiro’s findings. They slept slightly better than students in a classroom lit by the school’s preexisting fluorescent lights, even after accounting for differences in age, exercise, screen exposure, and classroom windows, among other variables.

Hints of positive impacts have emerged in Texas, too, where tunable LED systems have been installed in some elementary and middle school classrooms in Carrollton, a northern suburb of Dallas. A September DOE report on the Carrollton systems suggested that the tunable LED system had improved the overall learning environment—though the DOE noted that empirically measuring the effects of the circadian lights of was beyond the scope of the project. Back in Washington, entire schools — including two Renton high schools and a brand new middle school—now have circadian lighting, and initial data out of Lindbergh High School seemed to echo the findings in Texas: The school reported a double-digit rise in SAT test scores following installation of the tunable LEDs.

The emerging evidence for circadian lighting’s benefits has been enough to prompt the Washington Sustainable Schools Protocol (pdf)—design guidelines for learning environments developed in collaboration with the state’s Office of Superintendent for Public Instruction—to encourage the use of tunable LED systems in the construction of new school buildings. Meanwhile, the Seattle Mariners professional baseball team became the first in the major leagues to install circadian lighting in the players’ locker room in 2013. They preset the LEDs to provide stimulating pre-game light and calming post-game light. The latter aimed to help the players rest and recover for the next nine innings—usually scheduled for the next day.

 “No matter what sport you’re in, or whether you’re in a learning environment or in a health care environment, we all know that blue sky and sunshine mean everyone is more energetic and their mood is better.” “When you’re in sports, you’re looking for every advantage you can get to improve performance,” said the team’s former facilities manager, Scott Jenkins, who is now with the Atlanta Falcons of the National Football League. He recently installed tunable LED lighting in the Falcons facilities, too. Other professional teams including the Portland Trailblazers, Denver Nuggets, and New York Yankees have also followed suit. “No matter what sport you’re in, or whether you’re in a learning environment or in a health care environment, we all know that blue sky and sunshine mean everyone is more energetic and their mood is better,” Jenkins said. “When you live in Seattle and you suffer through months at a time without any real sunshine — well, there’s a reason Starbucks does so well.”

“There are only 32 NFL teams. There are only 30 MLB teams,” added Jenkins. “But think about how many schools there are, and how many health care facilities there are. To be able to use light to benefit people’s learning and health—there’s a huge opportunity there.”

Still, for all of its suggested promise, the impacts of tunable LED lighting on learning—or on anything else related to public health, for that matter—remain mostly speculative. Even Stine is hesitant to give full credit to the new lighting alone for Lindbergh High’s improved test performances. “There are so many factors in student achievement,” he said, adding that the classroom lighting systems would benefit from a rigorous scientific study.

Other possible benefits of circadian lighting in schools, such as improved behavior and attention, are even more difficult to gauge. “I don’t know what they would have achieved otherwise. But I have a class where all the pupils are motivated,” says Milstam in Sweden. “And it’s a different situation for many other classes in the school.” Barbee, too, recognized other factors that might influence her students’ responses, including her use of music and how she announces to her class when she switches light settings.

Experts share these teachers’ caution in making too much of the lighting just yet. “It’s thrilling for a basic biologist to see stuff translating into practical applications,” said Brown University’s Berson. “But we need to be careful not to get too far ahead of ourselves and assume we really know what a particular color of light is doing to an actual child in an actual school environment without appropriate controlled studies.”

Deborah Burnett, a lighting consultant partner with Benya, also worries that certain lights might even have the potential to harm some students. Children don’t have the same natural defenses in their eyes as adults, she noted, expressing particular concern for when light levels rapidly and drastically change multiple times throughout the day, which is how Barbee and many other teachers currently use the lighting. In fact, Milstam’s students in Sweden initially found the quick changes in brightness and colors too jarring and distracting, which prompted school officials to program the lights to very gradually adjust over the course of the school day.

For all the uncertainty, research does suggest that blue-spectrum light may boost alertness and cognitive function, and Coffman’s environs at Vulcan Inc. bears witness to this notion in exquisite detail. Near his desk is a small conference room with bright green-painted walls. Instead of another trip to Starbucks whenever he needs a strong pick-me-up, Coffman will now often opt for what he refers to as a “blue blast”: 15 minutes of intense blue light in this room. If he’s still feeling wired at the end of the day, Coffman adds, a short orange-hued blast will put him in the mood for a beer.

Vulcan’s lighting retrofit was the first large-scale installation of tunable LEDs in a US office building, according to Planled, a lighting solutions company based outside Seattle, which consulted on the project. (They also partnered with the Renton School District.) On all six floors of the Vulcan offices, employees now spend their days under the new lights. In addition to personal computer-based controls, an employee can push a button that syncs their overhead LEDs to the day clock, much like in Milstam’s classroom.

“Your people are where most of the cost is,” says Cody Crawford, the head of facilities and operations at Vulcan. His office is down the hall, past a photo of the burning sun, from Coffman’s desk. He emphasizes the importance of educating Vulcan employees about the lights. “People in general don’t like change. They may not realize that the lack of light is making them tired and groggy,” he adds. “You almost have to force them to try it for more than an hour.”

Much like Barbee says of her kindergarteners’ responses to tunable LEDs at Renton Park, which is just a short drive south on I-5, Crawford can’t be sure how the new lighting is impacting Vulcan’s employees—or its bottom-line. It’s hard to measure productivity “unless you’re a manufacturing facility,” he says. Crawford’s team had considered assessing absenteeism, but complicating factors such as high staff turnover and variations in annual flu bugs dissuaded them.

“People are happy about it,” says Crawford says of the new lighting. “How much more effort do you want to put into [measuring] it? Time is money.”

Steven Lockley, a circadian lighting expert at Harvard Medical School, is among experts who have attempted to measure effects. His team found that people exposed to blue-rich light reacted faster and had fewer lapses in attention than people exposed to warmer hues. In a paper referencing his work, other researchers found blue light significantly superior to caffeine in boosting cognitive function and alertness in 21 people. Plus, light lacks the same knock-on consequences as a cup of coffee. “Caffeine at 10am will still affect your sleep at night,” says Lockley, noting the chemical’s five-to-six-hour half-life.

 A study of employees receiving high levels of circadian-stimulating light during work hours found they had more stable circadian rhythms, as well as lower levels of depression and greater sleep quality. report (pdf) commissioned by LightingEurope, an industry trade group, calculated office productivity increases equivalent to about two more hours per month, a decrease in sick days of one percent and an increase in employment duration of one year as a result of tunable LED lighting. (They found greater benefits in the industrial setting.) And in a study by Figueiro’s team of daytime light exposure on office workers(pdf), employees receiving high levels of circadian-stimulating light during work hours had more stable circadian rhythms, as well as lower levels of depression and greater sleep quality, compared to employees receiving lower levels.

The employees in Figueiro’s study all wore a device calibrated to measure light exposures deemed capable of affecting the circadian system. Overall, her team found that nearly half of the workers studied did not receive enough light in the morning to adequately stimulate their internal clocks, despite nearly all of them receiving the Illumination Engineering Society’s recommended level of illuminance, 300 lux, at their desks. (For comparison, natural light is about 100,000 lux on a sunny day and 10,000 lux on a cloudy day.) Such recommendations, as well as most energy codes, are generally calculated with only visibility, safety, and energy-efficiency goals in mind. “Energy codes are getting more and more strict,” said Figueiro. “The tendency is to reduce the amount of light.” At Vulcan, for example, daylight sensors automatically reduce artificial lighting in response to available daylight, per a requirement from the City of Seattle.

Russell Foster, an expert in circadian neuroscience at the University of Oxford, pointed out that while adding bright light in the workplace will increase levels of alertness, it remains unclear how that exposure might stabilize the circadian clock compared to light exposures, say, during your commute to work or while you’re in the bathroom brushing your teeth. “It may well be that it’s too late by the time you get to work,” said Foster, whose research uncovered some of the first evidence for the third photoreceptor.

“After the ‘Wow, this is extraordinary,’ it has taken us a while to get to the applications,” he added. “We’re now at an incredibly exciting stage. The next leap forward is making this work in the real world.”

Neuroscientists, biologists, sleep doctors, and architects around the world are attempting to address the questions necessary to make that leap: Just what intensity and color of light — and when and where and for how long — best keeps our circadian clocks ticking on time? How much does this recipe vary by age, sex, and other differences between us? In search of answers, some scientists are using devices designed to measure a person’s exposure to light. Others are leveraging functional MRI technology to understand the brain’s response to light. Still other researchers are attempting to decipher more details of the complex circadian circuitry via animal models.

Much of the work continues to focus on light’s dark side. Too much light at night, underscores a December report that summarized findings of an expert panel convened by the National Toxicology Program, disrupts sleep and other biological processes controlled by our clocks. But a consensus has emerged that the problem is not just over-lighting our eyes at night, but also prevalent under-lighting during the day. Lockley, Figueiro, and Berson were among more than a dozen scientists who penned an opinion paper in 2014 arguing for the consideration of both factors in lighting design. A study in mice published in October 2017 further hinted that some of the consequences of failing to do so may be passed down through future generations.

Marty Brennan, a Seattle-based architect, is among the newer names now seeking solutions. He has developed software to help designers simulate daylight. He implemented the tool himself in recent projects at the Swedish Medical Behavioral Unit in Seattle and Children’s Hospital of Philadelphia. Meanwhile, research from Kenneth Wright of the University of Colorado, Boulder, focuses on the more intuitive aspects of the idea. In a small study of preschool children published in March, he found that an hour of bright light before bedtime nearly stopped production of the sleep-promoting hormone melatonin. Suppression continued for almost an hour after the lights went out. Wright also co-authored a 2017 study that suggested exposure to natural light during a couple nights of camping — without any electronics — can rapidly reset the body’s circadian clock.

The takeaway: While scientists still can’t beat the real thing, they might be getting better at simulating Earth’s day-and-night cycles. “Electric light does the trick,” said Brennan.

Mickey and Minnie Mouse smile and sway on a windowsill — the bobble head dolls’ dance powered by rays of California sunshine. A dozen feet away, a woman sits in her wheelchair engrossed by a soap opera. She’s back in her room after winning a round of bingo, and will soon roll down the hall to lunch at the Bistro Cafe. The stretch of hallway outside her door is known in this Sacramento nursing home as Bamboo Lane. Since the ACC Care Center replaced Bamboo Lane’s fluorescent lights — which stayed on full blast day and night — with the tunable LEDs, she and other residents report that they’ve been sleeping better and experiencing improved moods. Melanie Segar, an administrator at the center, describes one resident, as having gone from being angry much of the time to being in a “happy place.”

“That’s the best we can hope for with dementia,” Segar says.

By the age of 75, science suggests that the average adult receives just 17 percent of the light needed to fully stimulate the circadian system. A yellowing lens, a narrowing pupil, cataracts, and increased time spent indoors can all conspire. To make matters worse, blue is the part of the light spectrum filtered by the eye’s aging lens. This lack of light reaching the retina can disrupt the natural fluctuations of hormones such as cortisol and melatonin, explains Dr. Scott Stringer during a visit to his office at the nursing home.

When Stringer started at the center four years ago, he began giving some residents with behavior and depression issues an unusual prescription: a couple of hours of morning sunshine. That’s generally a fillable order in a city boasting 265 annual days with sun. “Sunshine is still the gold standard,” says Stringer. However, for a 99-bed facility, it’s not practical to get everyone a daily dose of courtyard sun. The introduction of circadian lighting at the center means Stringer’s light prescriptions are no longer limited to those he’s able to roll outside.

 Research suggests that manipulating artificial light could prove a useful non-pharmacological tool to regulate the circadian rhythms of older adults, especially those suffering from dementia. Research suggests that manipulating artificial light could prove a useful non-pharmacological tool to regulate the circadian rhythms of older adults, especially those suffering from dementia. The disease can damage neurons in the region of the brain that controls the circadian clock. So, if the tunable LEDs really can compensate for some of that loss, Stringer anticipates a significant impact on residents’ well-being and on health care costs. “Hospital readmissions cost a lot of money,” says Stringer, adding that the nursing home should be a “one-time destination.”

The ACC Care Center was the focus of another DOE study, conducted after the center had installed its first tunable LEDs in a couple residents’ rooms and the adjacent corridor of Cherry Lane. In addition to energy savings of 68 percent relative to the old fluorescent system, they found that the three residents living in the two rooms had 41 percent fewer incidents of yelling, agitation, and crying during the three months following the installation compared to the preceding three months. Nursing staff also noticed that these residents began consistently sleeping through the night.

“I didn’t think much about lighting before. But I’ve become a true believer after seeing how it’s affected residents,” says Segar, as we finish touring the center. Once Cherry Lane got the tunable LEDs, she recalls, residents from other corridors began hanging out there. “And their family members began asking when they would be getting the lights too,” said Segar.

The center has now replaced the lights in all halls, common areas, resident rooms, and bathrooms as part of a broader remodel of their 30-year-old facility. Stringer is eager to study the impacts in more detail than what can be inferred from a small uncontrolled study. “We need a prospective study to see if it’s really the lighting,” he says.

That’s the other refrain I heard repeatedly over the course of the last year. While there are strong hints from research advances in cellular biology and neuroscience, some peer-reviewed studies in animals and people and a number of compelling anecdotes, much better data is needed to optimally apply circadian lighting in the real world. “We need measures of light exposure over long periods of time in a range of different settings in a larger number of subjects,” said Foster, adding that improved technologies for measuring sleep, circadian rhythms, and light exposures should make such studies doable. “Until we have that data, designing those lighting systems appropriately is going to be guesswork. We may guess correctly and it may be better than what we got. But, ideally, we should have evidence-based solutions.”

Such solutions will need to consider a host of complicating factors. Whether or not exposure to light will help or hinder someone’s rhythms comes down, primarily, to getting the right color at the right intensity at the right time and for the right length of time. But the response of each individual’s circadian system is unique, varies by age and is further influenced by other factors such as region and season. Human evolution began near the equator, where we never dealt with any significant shortening and lengthening of daylight hours. Our third photoreceptor also evolved with light coming down from the sky, meaning the angle at which light hits the eye is likely important too. What’s more, researchers are finding that exposure to blue-spectrum light may be less critical for stimulating the circadian system when the overall light exposure is high.

No standard yet exists for measuring light that affects people via the third photoreceptor. Traditional light metrics such as lux, lumens, and color temperature are based on rods and cones alone. At this point, experts can only agree with the need for a standard single metric for the circadian effectiveness of light. In their studies, the DOE used something termed the “equivalent melanopic lux.” Figueiro and her colleagues use a metric they call the “circadian stimulus.” Meanwhile, a committee of the International Commission on Illumination (CIE) is attempting to translate the scientific consensus into a first international standard. John O’Hagan, director of the CIE’s Division on Photobiology and Photochemistry, noted that voting is underway and a final version could be published by the end of 2018.

The new standard will include information concerning the effects of age, an area of personal interest to O’Hagan. His father-in-law suffered from Alzheimer’s until his death. “I was horrified at the environment he had to live in,” recalled O’Hagan, referring to ever-present fluorescent light his father was exposed to. “I firmly believe that something can be done.”

Harvard’s Lockley added his sense of urgency to leveraging circadian lighting. Building managers have started swapping out old lights for energy-efficient LEDs, usually of the cheaper, non-tunable variety, he said. Designers of new construction are generally opting for the same. Because of the long lifespan of LEDs — much of their appeal — it could be a decade or more before those lights fade to yield another justifiable opportunity to invest in tunable LEDs. He did highlight one notable early adopter: In 2016, NASA installed tunable LEDs on the International Space Station.

“If it’s good enough for astronauts on the space station,” Lockley said, “then it’s good enough for all of us.”

Comments by Ralph:   Need help or interested in improving your lighting in your facility or hospital. reach out as I have many fixtures / products to get the proper color balance and mix for what you want to achieve.  I can be reached at 267-370-1442 or ralph.girondo@fsgi.com

 

 

 

 

The Benefits of Bright Light for Hospital Patients

The Benefits of Bright Light for Hospital Patients

Hospitals and nursing homes are turning up the lights in some patients’ rooms, amid new research on how light affects mood, energy and sleep.

Some hospitals and nursing homes are seeing the light—and rethinking the dim glow that illuminates most patients’ rooms.

Once an afterthought, lighting is getting attention as researchers see how it affects a person’s mood, energy and sleep. A clinical trial at Mount Sinai Health System in New York City is testing whether brighter lights in cancer patients’ rooms in the morning can make them feel less tired and depressed and help them sleep through the night.

Phillip Christian Smith, a 48-year-old actor and playwright, took part in the Sinai trial when he was hospitalized in September for multiple myeloma, a cancer of the blood. Mr. Smith needed a stem-cell transplant, which had him in the hospital for two weeks. Every morning at seven o’clock, Mr. Smith says, an intense light shone from the fixture beside his bed. “It was like one thousand suns…shining on me” he says. Mr. Smith had been an erratic sleeper, in part due to late nights waiting tables, he says. But his sleep stabilized in the hospital and he credits the lighting. The Sinai research’s working hypothesis is that strong light affects patients’ circadian rhythms, helping them sleep better. The light also may have sustained Mr. Smith’s spirits, but he isn’t sure. He wept the first day in the hospital, he recalls, but never sank into a depression. “I didn’t go to a real dark place,” he says, wondering, “Was that the light?”

Our circadian rhythms, or body clocks, govern biological and psychological functions in roughly 24-hour cycles. “We believe that light will affect circadian rhythms, which in turn will affect sleep, depression and fatigue,” says Heiddis Valdimarsdottir, a researcher in the Sinai study.

Sinai worked with the Rensselaer Polytechnic Institute in Troy, N.Y., which has a Lighting Research Center. Its director, Mariana Figueiro, an architect with a background in biology, helped design light fixtures for the randomized trial, which was funded by the National Cancer Institute. The fixtures can provide dim light or circadian-stimulating high-intensity light. Any type of light can affect circadian rhythms, Dr. Figueiro says, “as long as you develop the right spectrum [or color] and the right intensity.” Strong fluorescent lights could work, although people tend to prefer light-emitting diodes or LEDs.

Thus far, about 44 patients have taken part, with half being exposed to intense light in the morning. The other half remained in the “placebo” or dim light, according to Dr. Valdimarsdottir, an assistant professor at Sinai’s Tisch Cancer Institute.

Dr. Valdimarsdottir says the findings on sleep and fatigue still need to be analyzed. But with depression, early results are promising. About 40% of participants were clinically depressed after the first week in the hospital. That share remained constant for those who received the light therapy, but jumped to 70% among those in the dimmer “placebo” light.

“What I find amazing is that having more intense light, changing the light in the room will prevent depression” from getting worse, Dr. Valdimarsdottir says. “Usually when you are sick, you want dark around you. You want the curtains closed and the lights off. But…for a few hours, we are stimulating the circadian rhythms.”

Dr. Valdimarsdottir’s colleague, William Redd, a professor at the Icahn School of Medicine at Mount Sinai, notes that dim light in hospital rooms doesn’t cause patients’ problems. Their cancer and tough treatments are what trigger depression, fatigue and sleep problems. Even so, he says, “it is quite possible the hospital lighting makes it worse.” The researchers plan to present their findings in November at the International Congress of Behavioral Medicine’s annual meeting in Santiago, Chile.

Circadian rhythms, while crucial to well-being, remain a realm shrouded in mystery. Three American scientists won the Nobel Prize last year for their work on the subject; the Nobel committee praised them as “able to peek inside our biological clock and elucidate its inner workings.”

Rensselaer’s Dr. Figueiro has been tinkering with light in elder-care facilities to ease Alzheimer’s patients’ agitation and sleep disorders. She says institutional lighting leaves much to be desired. “In hospitals, you have light 24 hours [a day] but really we need light during the day and no light at night when we are asleep,” she says.

In studies at Morning View Assisted Living, a South Bend, Ind., facility where many residents have Alzheimer’s or dementia, Dr. Figueiro changed the room lighting for those in her trial. About 15 patients participated over the past three years, according to Executive Director Roger Garmendia. The more-intense lighting isn’t a magic bullet, he says, but it “helps improve some mood and behavior, especially in the early stages of the disease.”

Two years ago, Debi Buzanowski was an Alzheimer’s specialist at the Marjorie Doyle Rockwell Center in Cohoes, N.Y., during a study using lights from Rensselaer with some dementia patients. She recalls that one resident went from being a recluse to becoming far more engaged. In January, Ms. Buzanowski was appointed executive director and says revamping the lights is a priority.

Facilities are beginning to understand lighting’s effect on health, Dr. Figueiro says, giving rise to a new buzzword: “circadian light.”

Comments: For more information on this as well as the proper LED lamps and fixtures to facilitate circadian lighting, contact me at 267-370-1442 or click the contact me button and schedule a phone consutlation. 

 

 

Human-Centric Lighting Puts People First

Human-Centric Lighting Puts People First

Article by Carrie Meadows ..LED Magazine….Dec. 2017

Can lighting affect human circadian rhythms? Yes! This article details 5 reasons why you should install healthier lighting into your spaces:

1. Developing appropriate human-centric lighting — or lighting for health and wellbeing — is more than just delivering lumens in a finite spectrum.

Right off the top, Figueiro was very clear on this point: Brightness alone isn’t an indicator of quality lighting in these applications. And neither is a static correlated color temperature (CCT). The timing and amount of light matters to the human biological system. “Every photon counts,” she maintained. The LRC’s studies were designed to measure cumulative light exposure that would affect circadian rhythms and consequently other biomarkers for health and wellbeing.

2. Maybe you won’t need that afternoon espresso with a shift in lighting strategy.

No more afternoon espresso: You can promote alertness with a shot of the right light at the right times, when alertness tends to dip, when the lighting is designed to provide an appropriate circadian stimulus (CS). Learning about CS is really going to help smooth out any wrinkles in our understanding of lighting’s impact on circadian rhythms. Our contributing editor Mark Halper had discussed this recently with Figueiro when reporting on human-centric lighting in the workplace for our October issue. You can also get the tools you need to understand and calculate CS on the Light and Health section of the LRC website.

3. Blue light doesn’t need to get all the love — right on, red!

The LRC team’s studies also found that blue isn’t the only stimulating spectrum of light, just the one that mainly affects melatonin levels, which is why getting blue-rich white light at the wrong times of day can mess with your ability to sleep well. Figueiro pointed out that light in the red spectrum did not impact melatonin levels, but it was shown to improve subjective and objective measures of alertness when applied during the post-lunch dip in energy. You know the one — it makes you reach for that aforementioned espresso or anything else that might punch up your stamina temporarily.

4. Bring on the layers.

Both Figueiro and Hamilton emphasized the fact that one single lighting solution (or form factor, if you will) would not fit all spaces and their intended uses. Tunable lighting can be applied in downlights, accent lighting, close-up task lighting, just to name a few examples. Hamilton explained that in all the case studies he mentioned during the webcast, the designers involved in each space considered how it would be used and by whom. Overhead lighting was the mainstay but it can take many different forms, and individual areas or workspaces might need a shot of dynamic lighting — say, near a computer desk you might apply some of that red-tuned light or you might want to dim the fixtures to see the screen better. And daylight can and should be taken into account as well. Lighting should be layered in the space and easily controlled to best serve the changing needs of the occupants.

5. Prioritize the people and it will pay dividends.

Hamilton echoed a sentiment we read recently on the necessity of user-friendly and dynamic controls to achieve human-centric lighting designs. In our October issue, Legrand’s Charles Knuffke wrote that “[t]he effort to keep workers healthy, engaged, and attentive is a cause rooted in very real financial outcomes. And just as ergonomic chairs and keyboards, on-site health centers, and standing desks have helped businesses to have happier, healthier employees, HCL offers an additional opportunity to improve worker outcomes.” Hamilton noted that in all of his project examples, the decision makers involved understood the value proposition of a healthier kind of lighting system, including how to make it work with the building aesthetics. It was as important to the experience, comfort, and usability of the workplace as a wellness center, energy efficiency efforts, or sustainable materials in the building. And Ketra’s Natural Light system is designed to provide that ease of control and really fine-tune the light delivery, with the ability to determine the appropriate illuminance levels and CCT, generating a beautiful quality of light across whites and colors. We’re not promoting a commercial here, just evidence that research applied in commercialization can foster a healthier and more productive environment.  Need more info or help with this:  Please contact me at ralph.girondo@fsgi.com.